
Smalltalk: a Reective Language

Fred Rivard

Laboratoire Jules Verne

Ecole des Mines de Nantes & Object Technology International Inc.

France

rivard@info.emn.fr

Abstract

As in the Lisp tradition, Smalltalk is almost entirely
written in itself. It o�ers important advantages such as
large portability, dynamicity, a fully uni�ed world, graph-
ical user interface builders, connection to databases, pow-
erful development tools, etc. In this paper we discuss
the trait that underlies all these features: Reflection.
We quote one of its de�nitions and in the �rst part of
this paper go through the di�erent reective aspects of
Smalltalk. We expand �ve major aspects in detail:
meta-operations, the classes/metaclasses model, the rei-
�ed compiler, message sending and the behavioral rep-
resentation through the rei�cation of the executive stack
frame of each process. We illustrate their use with sig-
ni�cant applications, based both on our industrial and
research experiences. In the second part of the paper,
we introduce and fully develop pre/post conditions in
Smalltalk, dealing with extensions of the model, the
compiler, and the development environment.

1 Introduction

Smalltalk derives its success largely from being not
only a language but also an operating system and a de-

velopment environment as well as producing applications
which are extremely portable on multiple platforms. The
most important aspect about the language is that, in the
Lisp tradition, it is almost entirely written in itself. This
property makes it an open system that is easily extend-
able. The implementation of Smalltalk [Par94b]1 itself
is structured as an object-oriented program, expressed in
Smalltalk and organized around meta-level objects rep-
resenting the classes, methods, lexical closures, processes,

compilers, and even the stack frames. Smalltalk be-

1In this paper, Smalltalk designates the version Visual-

Works 2.0 of ParcPlace.

longs to the �eld of languages that deals with reection.

\Reection is the ability of a program to manipu-

late as data something representing the state of the pro-

gram during its own execution. There are two aspects of

such manipulation : introspection and intercession.

Introspection is the ability of a program to observe and

therefore reason about its own state. Intercession is the

ability of a program to modify its own execution state

or alter its own interpretation or meaning. Both as-

pects require a mechanism for encoding execution state

as data; providing such an encoding is called rei�cation"
[DBW93].

Even if the precise point at which a language
with reective facilities becomes a reective language is
not well de�ned (and is an interesting issue that mer-
its examination by the reective community as a whole),
Smalltalk has one of the most complete sets of reective
facilities of any language in widespread use. Although
Smalltalk is not fully reective due to the pragmatic

reason of e�ciency [GR83], its reective facilities can pro-
vide much of the power of full reection [FJ89]. This
characteristic is responsible for most of its advantages
over other industrial object-oriented languages, such as
C++ and Ada95.

1.1 Following the Lisp tradition

What probably accounts for a large part of the suc-
cess of the early Lisp interpreters and their di�erent
derived dialects, is the great ease with which one can
describe and build programs in terms of simple objects
such as lists. Taking the trivial example of the addi-
tion of two numbers, the program can be described as

(cons '+ '(1 2))

Thus, one can consider programs as regular data and may
use them as such. Futhermore, the program can reason
about itself. The idea follows that a program could see

itself as data, and thus modify itself.

Although Smalltalk seems to be a little bit more
complicated than Lisp at �rst glance, it has kept Lisp's
approach towards code, regarding and manipulating it as
regular data. Taking the creation of simple objects such
as points as an illustration, the external representation of
a point matches exactly the program that creates it.

1@2 represents a point where the x value is 1 and
the y value is 2. Moreover, the execution of this repre-
sentation, viewed as an expression, returns exactly the
point object 1@2. The internal representation can also
be accessed. An object may have a textual representa-
tion of its internal state using the message storeString,
which returns a sequence of characters that is an ex-
pression whose evaluation creates an object similar to it-
self. Thus (1@2) storeString returns the string 'Point
x: 1 y: 2'. Explicitly calling the regular evaluator us-
ing Compiler evaluate: '...aString...', the evalua-
tion of this next string returns true:

(1@2) = (Compiler evaluate:

((1@2) storeString))

)true

Classes, which are complex objects, also have a textual
representation.

ArithmeticValue subclass: #Point

instanceVariableNames: 'x y '

classVariableNames: ''

poolDictionaries: ''

category: 'Graphics-Geometry'

The above text matches the de�nition of the Point
class, which can be obtained by sending the definition
method to the rei�ed object that represents the Point

class. Thus the evaluation of a class de�nition returns an
object (a class) that returns exactly the same string when
asked for its definition.

The Smalltalk code is stored in what is called a
method, which corresponds (approximately) to a named
Lisp lambda-expression. As for classes, a textual repre-
sentation may be obtained just by sending introspective
messages. [:x j x+1] is equivalent to the (lambda (x)

(+ x 1)) Lisp expression. It is represented by an object
fromwhich one can ask for its external textual representa-
tion. In order to get their external textual representation,
methods and lexical closures, denoted under the voca-
ble block, use their internal representation, which mainly
comprises bytecodes, as well as a decompiler (which is

rei�ed, too). A special tool (CompiledCodeInspector)
makes the access to this source representation very user
friendly, using the mouse and a click on a �eld.

Therefore, following the lisp tradition, a
Smalltalk program may reason about itself regarding
and manipulating the di�erent objects that represent it
(textually or internally).

1.2 Meta-Objects

\First, the basic elements of the programming language -

classes, methods and generic functions - are made accessi-

ble as objects. Because these objects represent fragments

of a program, they are given the special name ofmetaob-

jects. Second, individual decisions about the behavior of

the language are encoded in a protocol operating on these

metaobjects - a metaobject protocol. Third, for each

kind of metaobject, a default class is created, which lays

down the behavior of the default language in the form of

methods in the protocol." [KdRB91]

Ordinary objects are used to model the real world.
Meta-objects describe these ordinary objects. As a con-
sequence, meta-objects mostly describe Smalltalk en-
tities. We quote non-exhaustively major meta-object
classes (classi�ed by subject):

1. Structure:
Behavior, ClassDescription, Class,

Metaclass, ClassBuilder

2. Semantics:
Parser, Compiler, Decompiler, ProgamNode,

ProgramNodeBuilder, CodeStream

3. Behavior:
CompiledMethod, CompiledBlock, Message,

Signal, Exception

4. Control State:
Context, BlockContext, Process,

BlockClosure, ProcessorScheduler

5. Resources:
ObjectMemory, MemoryPolicy, WeakArray

6. Naming:
SystemDictionary, NameScope, PoolDictionary

7. Libraries:
MethodDictionary, ClassOrganizer,

SystemOrganizer

8. Environment:
Browser, Inspector, Debugger

The methods associated with these classes formalize what
can be considered as the Smalltalk MOP.

1.3 Paper Organization

This paper is divided in two parts: the �rst part is a sur-
vey of the reective capabilities of the language, and the
second is an illustrative example of those capabilities. Af-
ter having presented meta-operations and their use, we fo-
cus on the most important reective subjects: structure,
behavior, semantic and control state. We describe the
involved meta-objects and their classes. We quote signif-
icant applications using such objects. As an illustration
of reective manipulations, we introduce pre/post con-

ditions in Smalltalk, dealing with (small) extensions
of the model, the compiler and the development envi-
ronment. We conclude with the current propensity of
Smalltalk to include more and more reection in re-
cent releases, which we consider as a sign of adaptability
to new software engineering challenges.

2 Reective aspects survey

Rather then going through a complete enumeration of all
the reective facilities of Smalltalk, we concentrate on
the most important ones:

1. Meta-Operation: regular objects as metaobjects,

2. Structure: classes as regular objects,

3. Semantics: compilers as regular objects,

4. Message Sending: messages as regular objects
(when errors occur),

5. Control State: processes as regular objects.

2.1 Meta-Operations

Meta-operations are operations that provide information

about an object as opposed to information directly con-

tained by the object. [: : :] They permit things to be done

that are not normally possible (page 195 of [LP90]).

2.1.1 Model

Major meta-operations are de�ned in the root of the in-
heritance tree, the class Object as methods for:

� addressing the internal object structure

{ Object>>instVarAt:(put:)2

reads (writes) an instance variable using an in-
dex instead of the name of the instance variable,

� addressing the object meta representation

{ Object>>class

returns the class of the receiver,
{ Object>>changeClassToThatOf:

changes the class of an object, and thus its be-
havior. But a heavy restriction of this method
is that both classes must de�ne the same for-
mat, i.e., describe the same physical structure
for their instances,

� addressing the object identity

{ Object>>#allOwners

returns an array of all objects referencing the
receiver,

{ Object>>#identityHash

returns an integer ranged in 0..16383. It is used

to implement dictionary classes3 which provide
e�cient access to the objects of a collection us-
ing keys,

{ Object>>#become:

swaps references between two objects (the re-
ceiver and the argument).

These meta operations consider an object as a meta-
object, but an object understands ordinary methods too,
such as printString or inspect. While some classes
de�ne only meta-objects (Class, Compiler, : : :), other
classes de�ne instances that can be quali�ed as meta-
objects depending on the context in which they are used
(Object, Array(cf 2.3), : : :). Therefore, stamping labels
on classes based on their meta(or not) instances cannot
always be reduced to a dichotomy of choices.

2.1.2 Usage

Introspection is the essence of reection, and so the
�rst applications using structural reective facilities are
tools used to introspect the Smalltalk system: the
Inspector class and its subclasses.

An inspector enables the user to look at the
structure of an object, and to modify its instance vari-
able values, using Object>>#instVarAt:(put:) meth-
ods. The inspector uses the inspected object class
(Object>>#class) to get its instance variable names

2NameOfClass>>selector: this syntax expresses that the

#selectormethod is implemented by the NameOfClass class.
3Dictionary, IdentityDictionay classes.

(Behavior>>#allInstVarNames) and the index of the
instance variables. Notice that these methods allow the
programmer to break the encapsulation of an object, and
this must only be used in pertinent contexts.

(3@4) x) 3

(3@4) instVarAt: 1) 3

(3@4) instVarAt: 1 put: 5) 5@4

(3@4) class instSize) 2

(3@4) class allInstVarNames) ('x' 'y')

A hierarchy of inspectors is available, allowing special-
ized inspection on particular objects, such as collections,
dictionaries, etc.

Inspector

ChangeSetInspector

CompiledCodeInspector

ContextInspector

DictionaryInspector

SequenceableCollectionInspector

OrderedCollectionInspector

2.2 Structure

Structural reection implies the ability of the language
to provide a complete rei�cation both of the program
currently being executed as well as of its abstract data
type[DM95]. Smalltalk as a uni�ed language only ma-
nipulates objects. Each object is an instance of a class
that describes both the behavior and the structure of its
instances. A class named Object de�nes the basic be-
havior of every object of the system, such as accessing
the class of an object.

2.2.1 Model

Classes as regular objects are described by other (regu-
lar) classes called metaclasses4. A metaclass has a sin-
gle instance (except metaclasses involved in the kernel
of Smalltalk). It establishes a couple class/metaclass
schema. Inheritance on metaclasses follows the one at
the class level (cf Figure 1), de�ning the Smalltalk

metaclass composition rule. This schema is known as
the Smalltalk-80 schema, and states how metaclasses
are composed. It may induce class hierarchy conicts
[Gra89], but for everyday development, the pragmatic
Smalltalk choice suits most needs. Metaclass display

4
Metaclass de�nition: classes whose instances are classes

themselves.

is the concatenation of the global name of its sole in-
stance (a class), and the class string. As an example,
the metaclass of the class Object is the Object class

metaclass.

The behavior of classes and metaclasses are de-
scribed by two (meta)classes respectively named Class

and Metaclass. In order for classes to behave as
classes, Object class inherits from Class. In partic-
ular the new method, enabling object creation, is acces-
sible. This property is often given as the de�nition of a
class. All metaclasses are instances of Metaclass, and
in particular the Metaclass class is also an instance
of Metaclass, stopping de facto an instantiation of in�-
nite regression. Two abstract classes named Behavior

and ClassDescription regroup the common behavior
between metaclasses and classes (for example new is de-
�ned on Behavior).

Finally the class/metaclass kernel of Smalltalk
is self-described with only �ve classes:

� Object

provides default behavior common to all objects,

� Behavior

de�nes the minimal behavior for classes, especially
their physical representation, which is known by the
Smalltalk virtual machine,

� ClassDescription

implements common behavior for Class and
Metaclass such as category organization for meth-
ods, named instance variables, and a save (fileOut)
mechanism,

� Class

describes regular class behavior,

� Metaclass

describes regular metaclass behavior.

xxx

Class

Metaclass

ClassDescription

Behavior

Object Object class

Behavior class

ClassDescription class

Metaclass class

Class class

: instantiation
: inheritance

Figure 1: Smalltalk class/metaclass kernel.

The Smalltalk-80 kernel has pragmatic origins,
resulting from several years of intensive development us-
ing simpler models that chronologically were Smalltalk-
72 [KG76] and Smalltalk-76 [Ing78]. In order to keep

an \easy to use" model, a tool named ClassBuilder

hides the apparent complexity of the kernel from the end-
user. A class creation (and its associated metaclass cre-
ation) is fully managed by the tool, which is called by
the class creation protocol5. It also automatically man-
ages class rede�nition, guaranteeing system consistency
in terms of object structures and preventing name con-
icts, especially instance variable name conicts. When a
class de�nition changes, existing instances must be struc-
turally modi�ed in order to match the de�nition of their
new class. Instead of modifying an existing object, the
ClassBuilder creates a new one with the correct struc-
ture (i.e., from the new class that replaces the old one).
It then �lls this new object with the values of the old one.
The ClassBuilder uses the become: primitive (cf 2.1.1)
to proceed with the strutural modi�cations, by replacing6

the old objects with the new ones throughout the entire
system.

Methods are held by classes in an instance vari-
able methodDict, whose value is an instance of the
MethodDictionary class. It enables access to the
Smalltalk

code. It also allows methods to be dynamically added at
runtime (ClassDescription>>compile:classified:).
The ClassOrganizer class provides an organization of
methods according to their purpose in protocols and
every class holds such an organization in the instance
variable organization. Classes themselves are grouped
into categories according to their purpose. Smalltalk

organization represents the organization of classes. It
is an instance of the SystemOrganizer class which is a
subclass of the ClassOrganizer class.

2.2.2 Usage

An ordinary use of the self-expressed kernel is to ex-
tend it in order to match new application domains.
Our next pre/post conditions example (cf 3) is such
an extension. As another typical example, Classtalk
[Coi90] proposes an experimental platform (an exten-
sion of Smalltalk) to study explicit metaclass pro-
gramming. But even in the language, rei�cation is of
great bene�t allowing introspection using dedicated tools:
Browser. It manipulates classes and metaclasses as reg-
ular objects. Thus, it can investigate their de�nitions
ClassDefinition>>#definition and their inheritance
links, following the rei�ed superclass/subclasses in-
stance variables.

5subclass:instanceVariableNames:classVariableNames:
poolDictionnaries:category:

6
These are actually pointer manipulations

The Browser organizes the user external interface
according to the information held by the di�erent rei�ed
organizations (cf Figure 2):

� A list pane showing the categories, using Smalltalk

organization,

� A list pane showing class names,

� A list pane showing the protocols of a selected class,

� A list pane showing the selectors of a selected proto-
col,

� A text pane for method edition, class de�nition edi-
tion, class comment, : : : .

Categories Classes
Protocols Methods

Text
Figure 2 :Smalltalk browser with the di�erent panes.

The rei�cation of classes allows the language to
provide essential e�cient utilities such as implementors

(look into all classes for methods matching a given name),
senders (look into all methods for the ones performing a
given sending message) and messages (look for implemen-
tors of a message present in a given method).

Point selectors

) IdentitySet(#x #y #transpose : : :)

Point compiledMethodAt: #+

) Point>>+

Point findSelector: #class

) #(Object Object>>class)

Point superclass

) ArithmeticValue

Point compilerClass

) Compiler

2.3 Semantics

One of the salient features of Smalltalk is the fully
rei�ed compilation process. Since any compiler implic-
itly gives the semantics of the language it compiles, and

because Smalltalk has in itself, as regular objects, its
own compiler, the Smalltalk semantics is fully control-
lable. Therefore one may extend the current language
semantics providing new compile-time features by extend-
ing/modifying current compilers.

This approach must be compared to the one
of compile-time MOP [LKRR92], which breaks the
compilation process into small independent fully redes-
ignable pieces. Smalltalk compilation uses the ex-
isting Smalltalk code for its own needs, and is de-
signed as a regular OO program which is causally con-
nected to the language. Thus, using current OO tech-
nology, one can extend the current compilation process.
Next we describe what can be considered as the �rst
compile-time MOP. But the heavy interaction between
what is part of the compiler and what is not sometimes
makes the use of this compile-time MOP di�cult. There-
fore the authors of [HJ95] proposes a more parametrized
compiler. This big interconnection between the compi-
lation phase and the Smalltalk language as a whole
is demonstrated by the next small example, which dis-
cusses the order of argument evaluation of a message send.
The compilation process uses the regular do: method
from the SequenceableCollection class, allowing the
treatment of each element of a collection in a left to
right order. Therefore, it de�nes a left to right seman-
tics for the argument evaluation order. In that, the
SequenceableCollection class can be seen as a part of
the compilation process because it de�nes the semantics
of the argument evaluation order. Notice that the ar-
ray that is used to hold the arguments of a message at
compile time is therefore a meta-object(cf 1.2) but other
arrays would not necessarily be meta-objects.

2.3.1 Model

The two separated parts of the compilation process, pars-
ing and code generation, are described by class hierar-
chies. We �rst describe them, and then proceed with
their order of execution for compiling method source.

� Parser: it produces a parse tree whose nodes are
ProgramNode. The Smalltalk syntax is concise,
as it only requires method de�nition. A method is
described by a keyword associated with argument
names7 followed by an optional temporaries list and
an optional expressions list. Expressions are assign-
ment, message sending and instance variable access.
The parser/compiler also de�nes pseudo-variables
(self, super, thisContext) and syntactical ob-
jects (true, false, nil, #(...anArray...), [...a
block closure...]),

7
The pattern may be omitted for evaluation.

� ProgramNodeBuilder: programNode generators.
They are used by parsers to construct the nodes of
the syntax tree. Builders allow the complete discon-
nection of the (recursive descent) parsing mechanism
from its result (the nodes),

� ProgramNode: syntactic nodes built by
programNodeBuilders. They hold the code gener-
ation methods emitEffect: and emitValue. The
next hierarchy presents the classes that formalize the
Smalltalk syntactical rules.

ProgramNode

MethodNode

ParameterNode

StatementNode

ReturnNode
ValueNode

ArithmeticLoopNode

AssignmentNode
CascadeNode

ConditionalNode

LeafNode
BlockNode

LiteralNode

VariableNode
LoopNode

SequenceNode

SimpleMessageNode
MessageNode

The MessageNode class represents message sending.
It implements a tiny macro expansion mechanism at
code generation time. The MacroSelectors dictio-
nary holds selectors that need expansion8 and their
associated transformation symbols. In order to pro-
ceed to its code generation, a messageNode �rst tries
to expand itself. It then proceeds to the regular
code generation of its expansion, or to the genera-
tion of itself if no expansion has occurred. As an
example, an and: message send is transformed using
transformAnd into a conditional.

� CodeStream: byteCode accumulators during code

generating. They hold the compilation context in the
form of a chain of environments. A codeStream is the
argument that is passed to both emitEffect: and
emitValue: methods while the (recusive descent)
code generation occurs. The result of the code gen-
eration is a CompiledMethod,

� CompiledMethod: it holds (in the instance variable
bytes) the array that represents the byteCodes: op-

codes de�ned by the DefineOpcodePool class, which

8timesRepeat:, ifTrue:, ifFalse:, and:, or:, whileFalse:,

whileTrue:, repeat, : : :

de�nes a set of opcodes of a usual stack-based ma-
chine, with a special instruction for message sending.
These opcodes are understood by the Virtual Ma-
chine (VM). As a matter of fact, when a method
is executed for the �rst time, the VM translates
the Smalltalk bytecodes into codes of the underly-
ing machine. These new native codes are then exe-
cuted each time the method is used. Changing plat-
forms makes methods return to their initial creation
state (i.e., native code generation occurs again at
�rst call). The CompiledMethod class is a variable
class9, i.e., instances have a part (called the vari-
able part) that behaves as an array. The literals of a
method such as literal arrays and string, are bu�ered
into this variable part. According to VM code
limitations, the literal collection size of a method
may not be greater than 256 (ByteCodeStream
class>>literalLimitSignal)10.
A CompiledMethod may return its source, using
the #getSourceForUserIfNone: method, which
asks the SourceFileManager default for the cor-
responding source. If no source is available, a
Decompiler decompiles the method byteCodes and
pretty prints the result,

� NameScope: they are linked together in order to build
the chain representing the compilation context, also
called the symbol table in other language compilers.
The code generation occurs in a compilation context,
which is currently associated with a given class, and
its superclasses. When Object is reached, the dictio-
nary Smalltalk is taken as the repository of system
globals. Compilation makes the assumption that the
receiver is from the class (or subclasses) to which
the method currently being compiled will be added.
This is not always true, as when using the become:

method, for example (cf 2.1.1),

� Compiler: they are in charge of the schedul-
ing of the parsing and code generation phases.
Parsers are associated with compilers through the
preferredParserClass method which returns the
parser class needed to parse the text to be compiled.

� CompilerErrorHandler: they manage error noti�-
cations during code generation. Error management
is disconnected from the compilation process, allow-
ing a change of policies. Thus subclasses are pro-
vided such as InteractiveCompilerErrorHandler,
NonInteractiveCompilerErrorHandler,

9variableSubclass:instanceVariableNames:.....
10
This limitation must be taken into account while dealing with

large automatically generated methods.

SilentCompilerErrorHandler. The default behav-
ior is to use an interactiveCompilerErrorHandler

when compiling from a browser and a
nonInteractiveCompilerErrorHandler

when reading source froman external �le (fileIn ac-
tion). An InteractiveCompilerErrorHandler pro-
vides a speller when a new symbol is encountered
(newSelector), warns the user when a temporary
is used be-
fore it is initialized (readBeforeWritten), watches
out for undeclared objects such as temporaries and
class variables (undeclared), and proposes appropri-
ate corrections to the user (declareGlobal:from:,
declareTemp:from:, declareUndeclared:from:),

� Decompiler: they are translators
of CompiledMethods into parse trees (ProgramNode).
Decompilers use a ProgramNodeBuilder to produce
the parse tree from byteCodes. It allows the com-
plete disconnection of the byteCodes interpretation

from the result (usually ProgramNodes when using
standard ProgramNodeBuilder).

All of these classes are part of the compilation
process. In order to introduce new semantics into
Smalltalk, one can extend these classes and the associ-
ated process that compiles code. We next describe what
steps this compilation process follows:

1. While compiling a new method on a class, the class
is asked what compiler should be used in order to
perform the compilation. This is done through the
Behavior>>compilerClass method. It returns a
compiler class appropriate for the source methods of
this class (the default is Compiler),

2. The compiler is then asked for its default parser
(preferedParserClass) in order to proceed with the
source analysis,

3. The parser scans the source-stream, picking out
Smalltalk syntactic tokens. According to
the token produced by the scanToken method,
it recursively descends into the rules of gram-
mar (constant, expression, primaryExpression,
temporaries, statementsArgs:temps:, argument,
pattern, method:context:, : : :methods). Each
time a syntactic element is completely de�ned, the
builder is asked to create it. In regular Smalltalk,
ProgramNodeBuilder returns ProgramNode. The re-
sult of the parsing is the root node (a MethodNode)
of the tree that expresses all the syntactic entities of
the method,

4. The compiler builds a codeStream, which is ini-
tialized according to the class of the method that
is being currently compiled. It builds the di�erent
NameScopes, linking them together,

5. The syntactic tree is asked for code generation. The
root methodNode receives the emitEffect: method.
It recursively asks each node of the tree to generate
its respective byteCodes into the codeStream,

6. The codeStream builds a CompiledMethod, accord-
ing to the bytecodes it has bu�ered. If there are
inner blocks (BlockClosure) in the method, which
need this method �lled in as the outer method, the
codeStream proceeds to do it.

These steps are summarized in the translate:noPat-
tern:ifFail:needSourceMap:handler: method11:

SmalltalkCompiler>>translate:aStream noPattern::: :

"< 1 >: : :parsing: : :"

methodNode := class parserClass new

parse: aStream

builder: ProgramNodeBuilder new : : :

"< 2 >: : :code generation: : :"

codeStream := self newCodeStream.

methodNode emitEffect: codeStream.

method :=

codeStream makeMethod: methodNode.

"method

2.3.2 Usage

Extending the proposed semantics by intervening in the
two phases of compilation allows new semantics to be

implemented that suit the domain of the application to
be modeled as well as possible. The open ended com-
piler allows modi�cation of itself in order to get improve-
ments needed to face new user requirements, such as a
new breakpoint mechanism [HJ95]. The introduction of
new methods into the language can be easily performed by
subclassing MessageNode, in order to propose new mes-
sage sending semantics. The code generation of this new
node will be di�erent, inserting its own semantics. In
our experience there are �ve major methods that are fre-
quently used to add new semantics:

(i) extension of the parser
(ii) extension of the node construction

(iii) modi�cation of the obtained parse tree
(iv) extension of the code generation phase

11
We simpli�ed the code for clearer understanding

(v) extension of the compilation environment

Our next pre/post conditions introduction (cf 3) uses a
modi�cation of the parse tree (iii). As another example,
we provide an e�cient implementation of asynchronous
message sending for Actalk [Bri89] (cf 2.4.2), dealing
with node construction extension (ii) [Riv95].

WithinActalk, the user has two message send se-
mantics at his disposal: the regular Smalltalk one, and
an asynchronous one. An asynchronous message send is
syntactically declared using the 'a.' pre�x12.

anActor a.message

The distinction between the two semantics can be made
by a syntactic analysis. Thus, the idea is to inter-
cept the messageNode creation made by aNodeBuilder

(mewMessageReceiver:selector:arguments:). We in-
troduce a new class, ActalkProgramNodeBuilder, sub-
classing the regular ProgramNodeBuilder. When the new
nodeBuilder creates a messageNode, it analyzes the selec-
tor of the message. If it starts with the 'a.' pre�x, then
the ActalkProgramNodeBuilder returns aMessageNode

of which the selector is the one that queues (at runtime)
the asynchronous message into the received messages
queue of the actor (addMessage:arguments:). Thus, for
the 'anActor a.message' expression, the builder returns
the next messageNode13:

aMessageNode

selector : #addMessage:arguments:

receiver : anActor

arguments: #(message, #())

Notice that this transformation can be assimilated to a
macro-expansion of all 'a.' pre�xed message sends.

More generally, used in association with the kernel
extension, compilation reection allows one to build new
languages [RC94]. It allows Smalltalk to execute source
code whose semantics is di�erent from the default one. A

large industrial example is given by Object5 [Sie94] 14.
It is a strongly typed hybrid language based both on the
actor and class paradigms, dedicated to Programmable-
Logical-Controllers. Although it has 3 di�erent message
sending semantics (2 are asynchronous), it is entirely ex-
ecuted in Smalltalk, without an Object5 interpreter
being written. This eliminates an always penalizing soft-
ware stratum. Types have been introduced extending the

12
The Actor class provides the behavior for such an actor-object.

13
See A.1 for the full source of the newMessageReceiver:selec

tor:arguments: method of the ActalkProgramNodeBuilder class.
14
a PLC OO framework for Siemens; 20 year/man; currently used

in batch or continuous processes.

class/metaclass kernel (TypedClass subclass of Class) in
order to provide typed information (method signature, in-
stance variable types, : : :). New syntactical nodes have
been introduced, and new compilers, too. Finally the
Smalltalk VM executes this new language as it used to
execute regular Smalltalk. Contrary to the (latent) re-
proach of the lack of e�ciency of reective systems, here
reection brought an outstanding gain of e�ciency.

2.4 Message Sending

2.4.1 Model

The unique control structure of Smalltalk is message
sending. It is composed of two phases:

1. lookup: a search for the method to apply according
to the receiver of the message sending,

2. apply: an application of the found method.

The lookup happens at execution time and uses class in-
formation. Although it is not described in the language
for reasons of e�ciency, the necessary information is ac-
cessible and modi�able from the language. All the infor-
mation lies in classes:

� the dictionary of methods (methodDict instance
variable: pair (aSymbol, aCompiledMethod))

� the inheritance link (superclass instance variable),

� caches, allowing optimization of the hardwired algo-
rithm. Caches are not rei�ed, but can be reinitialized
using primitives (Behavior>>#flushVMMethod
-Cache).

Messages are not currently rei�ed using instances of the
Message class except when the lookup fails. In that last
particular case, the #doesNotUnderstand: method is
sent by the VM to the original receiver with a rei�ed
message given as the argument.

2 zork results in
2 doesNotUnderstand: aMessage with
aMessage selector) #zork and
aMessage arguments) #()

An explicit message send may be called using the
perform: primitive15. A lookup result is a
CompiledMethod(cf 2.3.1), a regular object. The
valueWithReceiver:arguments: primitive allows the
application of aCompiledMethod with an array of argu-
ments.

15
The general form is perform:withArguments:.

-regular message send:
5 factorial) 120

-explicit message send using a symbol:
5 perform: #factorial) 120

-application of a CompiledMethod:
(Integer>>#factorial)

valueWithReceiver: 5

arguments: #()) 120

Accesses to overwritten behavior are quali�ed by sending
a message to the pseudo variable super. The lookup se-
mantics of such a message is slightly di�erent from the
default lookup, since it starts from the from the super-
class of the class which implements the method that ex-
ecutes the super. As a matter of fact, the class from
whose superclass the lookup starts is accessible within
the compiledMethod variable part16 (cf 2.3.1). This
class is pushed into the variable part at compile time
(CodeStream>>sendSuper:numArgs:).

To sum up lookup, Smalltalk provides two dif-
ferent entry points:

� one that starts the lookup from the class of the re-
ceiver,

� one that starts the lookup from the superclass of a
class stored in the compiledMethod variable part.

Notice that as message sending is the only control struc-

ture, an extension of the method semantics provides an
extension of the message sending semantics.

2.4.2 Usage

Everything is expressed in terms of sending messages.
There is no need for special keywords or special forms,
as in Basic, Ada'95 or C++, etc. As an ex-
ample, a class declaration is made by sending the
subclass:instanceVariableNames:classVariableNames:-

poolDictionary:category: message with correct argu-
ments. Browsers use this facility (cf 2.2.2).

An evaluation is expressed in terms of a de-
fault method. Then it is mostly evaluated (using
#valueWithReceiver:arguments:) with nil as the de-
fault receiver. The result is either discarded (doIt action),
inspected through the sending of the inspect message
(inspectIt action), or pretty-printed through the sending
of the message printString (printIt action).

The management of the lookup failure allows
the building of a catch-up mechanism by specializa-

16
using Object>>at: and Object>>at:put: methods.

tion of the doesNotUnderstand: method, as in the
encapsulator paradigm [Pas86], and in the implemen-
tation of asynchronous messages for Actalk [Bri89].
In particular, #valueWithReceiver:arguments: and
#perform: methods can be used. More generally,
#valueWithReceiver:arguments: enables one to dis-
pense with the use of the default lookup and to imple-
ment (in cooperation with the Compiler) new lookup
algorithms, such as multiple inheritance. This last
approach is an e�cient alternative to the use of the
doesNotUnderstand:method (cf 2.3.2).

As an example of the use of the doesNotUnder
stand method, we describe the implementation of lazy
evaluation in Smalltalk17 .

aLazyObject := [: : :aBlock : : :] lazyValue.
A lazy object represents an execution that may not be
required. It does not start execution until at least one
message has been received. aLazyObject is used as the
regular object that would have resulted from the evalu-
ation of the code inside the block ([: : :aBlock : : :]).
Thus it receives messages, such as color if it represents
a Car.

nil subclass: #Lazy

instanceVariableNames: 'result done args '

classVariableNames: ''

poolDictionaries: ''

category: 'Kernel-Processes'

As the Lazy class is a subclass of nil, ev-
ery message send causes the invocation of the
doesNotUnderstand method.

Lazy

doesNotUnderstand: aMessage

done

ifFalse:[result:=

result valueWithArguments: args.

done := true].

"result perform: aMessage selector

withArguments: aMessage arguments

When it receives its �rst message, the lazy object
forces the evaluation of the block. Therefore it computes
the real object, which was previously in a lazy state (i.e.,
uncomputed). It is bu�ered for other message sends. An
explicit message send, using perform:withArguments:,
allows the regular execution scheme to continue.

A classical use of super is the initialization of
newly-created objects. When adding a subclass, both new
and inherited initializations must be carried out. Thus,
the initializemethod of the subclass usually looks like:

17
Thanks to Mario Wolczko.

Subclass>>initialize

super initialize.

self localInitialization

2.5 Control State

The Smalltalk system is based on rei�ed pro-
cesses, and more generally on the objects needed
to build a multiprocess system. Processes man-
age time scheduling (timingPriority), event in-
puts such as keyboard/mouse (lowIOPriority), and
regular user evaluations (userBackgroundPriority,
userSchedulingPriority, userInterruptPriority).

2.5.1 Model

Processor, the sole instance of the ProcessorScheduler
class, coordinates the use of the physical processor by
all processes requiring service. It de�nes a preemptive
semantics between processes having di�erent priorities.
Processor yield gives processes that have the same
priority of the one currently running a chance to run.
Semaphore class provides synchronized communication
between processes (using wait signal methods). Real
time scheduling is provided by the Delay class. It repre-
sents a real-time delay in the execution of aProcess. The
process that executes a delay is suspended for an amount
of (real) time represented by the resumption time of the
delay.

The BlockClosure class represents lexical clo-
sures. It freezes a piece of code (along with its envi-
ronment) so that it may be evaluated later on. Blocks
can have temporaries and arguments. The general syn-
tactic form is [:arg1 : : ::argNj tmp1 : : :tmpM j expr1
: : :exprP]. Block evaluation is provided by primitives
named value, value:, valueWithArguments: depend-
ing of the number of arguments. Smalltalk uses lots
of blocks, as in the SequenceableCollection>>do:
method for example:

do: aBlock

"Evaluate aBlock with each of the receiver's

elements as the argument."

1 to: self size do: [:i j aBlock value: (self at: i)]

Process creation is based on blocks; the body
of a process is the body of the block. The
BlockClosure>>fork method creates a process. As
blocks may share an environment, independent processes
uses this facility to share common objects. A pro-
cess may be suspended, resumed or killed (using respec-
tively suspend, resume or terminate methods). The

interruptWith: method forces the process that re-
ceives it to interrupt whatever it is doing and to eval-
uate the received block, passed as the argument. The
ProcessorScheduler>>yieldmethod is a tiny but good
illustrative example18:

yield

\Give other Processes at the current priority

a chance to run."

j semaphore j

semaphore := Semaphore new.

[semaphore signal] fork.

semaphore wait

The currently running process (the one that exe-
cutes this code) creates a new semaphore. It proceeds to
the creation of a new process ([: : :] fork) that is pushed
into the list of the processes that may run (at the same
priority). The current running process then suspends it-
self while it executes the wait primitive. The VM then
takes the next available process and makes it run. The
small created process, which shares the semaphore with
the previously running process, will run in its turn. Its
only action before dying is to unblock the previously run-
ning process using the signal primitive on the common
semaphore.

The most remarkable reective facility of Small-
talk is the rei�cation of any process runtime stack,
through a chain of linked stack frames, called con-

texts [Par94a]. The pseudo-variable thisContext re-
turns the present context of the currently running pro-
cess. It is an instance of the MethodContext class, or the
BlockContext class.

A context mainly knows (Figure 3):

� the context (sender) which has \created" it via the
application of a method (cf valueWithReceiver:
arguments:), or the evaluation of a BlockClosure

using #valueWithArguments: (or #value #value:

: : :),

� the method (aCompiledMethod held by a class) cur-
rently being executed,

� an instruction pointer, remembering the operand
that is actually being executed in the method,

� the receiver of the message, and the arguments. Note
that the receiver is an instance of the BlockClosure
class for BlockContext.

18
We have simpli�ed the code for clearer understanding.

x = 2

y = 4

aPoint

method

method

sender

pc

pc

sender

stack

stack

1<10> push local 0

2<44> push self

3<80> send sumFromPoint:

4 <65> return

aCompiledMethod

receiver

aMethodContex

receiver

aCompiledMethod

receiver of the method

arguments, temporaries and working stack

instruction pointer in the code of the method

Figure 3 :Two elements of the executive stack. The top-

most MethodContext represents thisContext.

2.5.2 Usage

Smalltalk's extreme power of expression allows pro-
grams to fully control its own execution, using regular
objects such as Context: this is intercession.

Therefore, a �rst application of this execution con-
trol is the implementation of the exception handler mech-
anism into Smalltalk, which modi�es the \regular" exe-
cution scheme. The Exception class rei�es objects which
manipulate the executive stack in order to handle er-
rors (return, reject, restart). Exceptions are raised
through the stack, and are caught by handlers de�ned by
the handle:do: message, in order to take appropriate
actions on errors. This implementation may itself be ex-
tended or replaced in order to propose an alternative to
the error handling system of Smalltalk [Don90].

A second very important application of the rei�ca-
tion of the runtime stack is the Debugger tool (see Figure
3), which can:

� consult any context of the entire executive stack,

� look at what part of the selected context is being
executed,

� inspect the receiver of the message of the selected
context,

� inspect arguments and temporaries of the selected
context,

� proceed to a \step by step" execution (send, step),

� modify any context by recompilation of its method,
and continue the execution with this new code.

3 Reective Extension: Addition

of Pre/Post Conditions

Having described the most important reective facilities,
we illustrate their use with a small but complete realiza-
tion. Dealing with extensions of the model, the compiler,
and the development environment, we introduce pre/post
conditions on regular Smalltalk methods. This is a typ-
ical way of using the general reection of the language:
add new constructions and extend current facilities in or-
der to provide a language that suits the actual application
domain as well as possible. Pre/post conditions fall under
the category of software engineering tools.

Applications are not stable during both develop-
ment and coding phases. Therefore it is essential to pro-
vide mechanisms in order to check both the properties of
and the assumptions made on methods. Pre/post condi-
tions are devoted to this role. A number of languages,
following Flavors [Moo86], implement before/after meth-

ods (SOM [DFM94], CLOS,: : :). One of their uses can be
the implementation of pre/post conditions on methods.
But because before/after methods rely on a complex com-
position mechanism and because they are assigned to a
selector (name of methods) instead of the methods them-
selves (regular objects in Smalltalk (cf 2.3.1)), we use
another implementation. It better suits their roles as de-
scribed by: \The pre-condition expresses the properties

that must be checked when the method is called. The

post-condition certi�es those properties that the method

guarantees when it returns." [Mey90]. When the de-
velopment is over and the software is about to be re-
leased, correct method use makes pre/post conditions no
longer useful. They should be removed in order to pro-
vide software clean from any development topics. This
is how we use pre/post conditions. Our goal is to pro-
vide pre/post conditions in Smalltalk that respect the
dynamic and convivial tradition of the language. Speci�-
cations are summarized as follows:

� dynamic behavior : Smalltalk users are used to
dealing with dynamicity, like adding an instance vari-
able anywhere in a hierarchy of classes. Dynamicity
for pre/post conditions means being able to swap
from a state where they are active to another one
where they do not interfere at all with the code,

� hierarchy independence: the Smalltalk model
deeply connects a class to its metaclass (cf 2.2.1),
of which it is the sole instance. In respect to this
model we propose the activation (or deactivation) of
pre/post conditions on the class/metaclass couple,
but only locally. The activity of conditions on an A

class does not propagate to A's subclasses,

� syntactic convention: instead of extending the
syntax with a new special character such as the tem-
poraries delimiter (j), we use a convention. It is
an often-used scheme in Smalltalk, as for example
with the private protocol, which states that meth-
ods from this protocol are supposed to be for private
purposes [GR83]. Notice that an extension of the
method semantics (using the rei�ed compiler chain
(cf 2.3.1)) can provide such privacy,

� return semantics compatibility: the return se-
mantics (the " symbol) may require the popping
of many contexts. We assume that an active post-
condition will be evaluated even when returns occur
in the body of methods (or in a block evaluation
which closes a return),

� exibility: the code of both pre- and post-
conditions may access the method context, especially
parameters and temporaries,

� convivial interface (cf Figure 4): The interface
modi�cations must be as small as possible. The user
can:

{ look at the source of the pre/post conditions
associated with a method while browsing the
method source (without other manipulations),

{ know through his favorite development tool
(browser), whether or not conditions are active
just by looking at the class name display (class
pane of the browser),

{ change the activity of the conditions of a class
using a popup menu, as in Smalltalk's usage.

Figure 4 : The currently selected class (NodeItem) has its

conditions activeness set (cf (c)). The associated condi-

tions codes is executed at runtime. The �gure also shows

the menu (conditions) that permits the change from ac-

tive to non-active conditions (and vice versa).

Next we present the convention used to write con-
ditions (one or both conditions may be omitted):

selector

"comment"

j temporaries j

[..blockPreCondition..] preCondition.

[..blockPostCondition..] postCondition.

expr1 exprN

This syntactic representation o�ers several advantages:

� no \parasitic" methods are introduced, whose se-

mantics would have been derived from their selectors,
such as the creation of quali�ed methods as it is done
with method combinations described in [Coi90]. As a
matter of fact, this last solution su�ers major draw-
backs: these quali�ed methods pollute the interface
of the class, and there is no way to prohibit their use
as regular methods in another context,

� Using a block to represent a condition allows full ac-
cess to the method context. It would have been quite
di�cult to manipulate such a method context with
conditions outside the method itself (both tempo-
raries and arguments access would have been hard
to realize, for example).

3.1 Model Extension

When not active, pre/post conditions should absolutely
not interfere at execution time. This is the most im-
portant speci�cation of our method pre/post conditions.
This point is crucial. It means that at execution time, we
do not allow ourselves to test to see if the conditions are
active. Therefore, the test must be done at compile time:

� if conditions are active, then the code needed for their
execution is generated at compile time,

� if conditions are not active, then the conditions are
ignored and only the regular method body is gener-
ated.

Thus, we need two di�erent compilation phases. Chang-
ing from active to non-active conditions (and vice versa)
is expressed in terms of having a quick recompilation of
the class interface19.

We next describe our solution based on the intro-
duction of a subclass of Metaclass20.

19
This recompilation does not interfere with the source manage-

ment.

20
Conceptually, our extension can be assimilated to the introduc-

tion of a new metaclass in a system allowing explicit metaclasses

programming, such as ObjVLisp [Coi87].

Considering that the behavior related to conditions
activity is both on the class and its metaclass, and that
it should not interfere with the inheritance, we put the
activity notion on Metaclass, and on a newly created
subclass named MetaclassWithControl. This new meta-
class manages behavior according to development top-
ics such as pre/post conditions. The compilerClass

method (cf 2.3.1) returns the class whose instances (a
compiler) are used to compile the methods of a given
class. Thus the default compilerClass method is con-
ceptually raised one meta level from that of Behavior
to that of Metaclass and MetaclassWithControl (cf
Smalltalk kernel 2.2.1).

� Behavior>>compilerClass returns the compiler-
Class of the metaclass (i.e., calls one of the next two
compilerClass methods) (cf A.1),

� Metaclass>>compilerClass returns the default
compiler that does not take conditions into account

(and just forgets their associated codes),

� MetaclassWithControl>>compilerClass returns
the compiler that deals with conditions codes.

Thus (cf Figure 5),

� the metaclass of a class whose conditions are active
is an instance of MetaclassWithControl,

� the metaclass of a class whose conditions are not ac-
tive is an instance of Metaclass.

Changing from active conditions to non-active ones is
done by dynamically changing the class [Riv96] of the
metaclass from MetaclassWithControl to Metaclass

(and vice versa) using the changeClassToThatOf:

method (cf 1.2).

: is instance of
: inherits from

: dynamic metaclass change

Metaclass

MetaclassWithControl

AnyClass AnyClass class

Figure 5 :The metaclass class changes its class dy-

namically.

This solution has many advantages:

� as expected, it allows a class to behave in a certain
way, without interfering with inheritance. Indeed, a
dynamically added compilerClassmethod (cf 2.3.1)
on an A class metaclass would have been inherited
by all A class subclasses. Thus A and all its sub-
classes would have a connected behavior, which is
not within our speci�cation. This is due to the par-
allel inheritance trees provided by both the class and
metaclass levels (cf 2.2.1: Smalltalk model).

� no development topics lie hidden in classes (neither
in their de�nition nor in their interface). This must
be contrasted with a solution that would have added
an instance variable to the Class class de�nition,
in order to remember the activity at runtime. The
default compilerClass would have to test this in-
stance variable in order to answer the correct com-
piler. Compared to ours, this last solution is very
expensive both in terms of class de�nition impact
and space. Moreover it implies another problem:
when an application is released, all its classes have
a \development" instance variable always positioned
to the same boolean value. It is not reasonable to
produce such a class structure. A recompilation of
the Class class before release is not possible either,
because it would no longer be possible to have both
released applications and applications in the devel-
opment stage. In any case, it does not agree with the
speci�cation that when not active, conditions should
not interfere in any way with regular Smalltalk.

Finally, notice that this model extension illustrates the
great extensiveness of the Smalltalk kernel. In-
deed, if active conditions are put on Metaclass, its
class (Metaclass class (cf 2.2.1)) is an instance of
MetaclassWithControl, instead of Metaclass, which
was the kernel \trick" to stop the in�nite instantiation
regression. Moreover a new loop in the instantiation link
appears when MetaclassWithControl has its conditions
activity set to true. This demonstrates that even the very
deepest part of the Smalltalk kernel (cf 2.2.1) can easily
be extended, without causing the whole system to fail.

3.2 Environment Extension

Our choice of syntactic convention allows the method con-
text to be accessible from condition codes. From an in-
terface point of view, the user looks at its method and
associated condition sources at the same time. Practical

experience shows the advantage of this convivial repre-
sentation. It is combined with an immediate view of the
activity of the class conditions: when a class has active
conditions, the name of the class is su�xed by the (c)

string (cf Figure 4).

As we have extended the model in order to
add a new metaclass description to deal with devel-
opment topics, browsers should also take into account
this new description. Standard Smalltalk browsers,
as global introspection class tools, assume that class se-
mantics are �xed. Thus, in order to take new class
semantics into account, we modi�y the class interface
by adding a cooperation between classes and browsers
[RM93]: a browser does not simply ask for the name
of the class, but for its browsingName. With this
message, a class fully controls what a browser shows.
MetaclassWithControl>>browsingName adds the '(c)'
string su�x to the name (classOnControlString
method).

3.3 Compiler Extension

Having designed the structural part of the model and
shown its implication in terms of interface extension, we
now need to extend the compilation in order to manage
the needed codes for active pre/post conditions.

Our solution is based on manipulation of the parse
tree, which is generated by the Smalltalk parser. We
need:

� to position the pre-condition (if one exists) as the
�rst statement of the method. We also add the test
that raises an exception if the pre-condition evalua-
tion does not return true at execution time,

� to position the post-condition (if one exists) as the
last statement of the method. As with the pre-
condition, we add the test that raises an excep-

tion if the post-condition evaluation does not return
true. As returns may occur (in the method itself
or wrap within a blockClosure received as an ar-
gument), it could cause the post-condition to not
be evaluated. We wrap the entire method using
valueNowOrOnUnwindDo: which allows execution of
the post-condition regardless of what happens.

Next we give an equivalent syntactic form of what could
be the code if we were to decompile the parse tree after
its reshaping:

selector

``comment''

j temporaries j

[[..blockPreCondition..] value ifFalse:

[ParserWithControl preConditionSignal

raiseRequest].

expr1 exprN] valueNowOrOnUnwindDo:[

[..blockPostCondition..] value ifTrue:

[ParserWithControl postConditionSignal

raiseRequest]]

As we need a new compiler when pre/post condi-
tions are active, the CompilerWithControl class is intro-
duced as a subclass of the standard Compiler class. We
subclass the Parser class with ParserWithControl class,
which is associated with the new CompilerWithControl

class through a rede�nition of its preferredParserClass
method (cf 2.3.1). We next describe the steps that pro-
duce a method and its conditions:

1. the method is parsed as a regular Smalltalk

method. A parse tree is obtained as a result (cf 2.3.1)
of the �rst step of the compilation process,

2. the parser, aParserWithControl, reshapes the
resultant parse tree to get the previously de-
scribed transformation. During the transforma-
tion, new ProgramNodes are created, using the
parser builder, aProgramNodeBuilder (cf code A.1
ParserWithControl>>compilePreCondition).

3. the parse tree generates regular Smalltalk code.

The regular parser (an instance of theParser class) re-
moves pre/post condition codes, if any.

3.4 Benchmarks

The major goal of this extension is to provide code free

from any tests when pre/post conditions are not active.
Thus, if not active, conditions do not a�ect the runtime

performance at all. When active their code is executed
according to the code wrapped around the conditions,
which of course takes time.

We make two signi�cant benchmarks on the com-
pilation process:

1. we compare the time taken to compile a method
which is free from any conditions both (i) without
our extension, and (ii) using our extension with con-
ditions activity set to true. The compilation time

increases on average by less than 2% from (i) to (ii),
which allows a comfortable use of the extension,

2. we compare the compilation time of (i) a method that
has active conditions using our extension and (ii) the
equivalent code hand written by the user. (i) is on
average 9% quicker than (ii). This results mainly
from the fact that the source to parse is smaller when
writing conditions using our conditions extension.

4 Conclusion

We have described the current reective facilities of
Smalltalk. We have presented the most important cur-
rent aspects: meta-operations, the class/metaclass model,
semantics control through the rei�ed compiler, message
sending and behavioral representation through the rei�-
cation of the runtime stack processes. We have fully de-

scribed an example of reective use with the introduction
of pre/post conditions into Smalltalk.

As it evolves, Smalltalk tends to become more
and more reective. In particular we can quote the rei�-
cation of the dependent link (DependencyTransformer
class), and the de�nition of a parser generator
(ParserCompiler class), written in itself. Reflection

is the heart of Smalltalk. It gives the language its
great expressive power. Because the language possesses
the ability to naturally adapt itself to new application do-
mains, it may be considered as a truly perennial language.

Acknowledgments

I wish to thank all the reviewers for their comments.
Thanks to Pierre Cointe who helped me in the organi-
zation of the paper. Special thanks to Jacques Malenfant
who spent time on the elaboration of the �nal version of
the paper.

References

[Bri89] Jean Pierre Briot. Actalk : A testbed for
Classifying and Designing Actor Languages in
Smalltalk-80. In Proceedings of ECOOP'89,

Nottingham, July 1989.

[Coi87] Pierre Cointe. Meta-classes are First Class:
the ObjVlisp Model. In Proceedings of OOP-

SLA'87, pages 156{167, Orlando, Florida, De-
cember 1987. ACM Sigplan Notices.

[Coi90] Pierre Cointe. The ClassTalk System: a
Laboratory to Study Reection in Smalltalk.
In Informal Proceedings of the First Work-

shop on Reection and Meta-Level Architec-

tures in Object-Oriented Programming, OOP-

SLA/ECOOP'90, October 1990.

[DBW93] R.G. Gabriel and D.G. Bobrow and J.L.
White. CLOS in Context - The Shape of the

Design Space. In Object Oriented Program-

ming - The CLOS perspective. MIT Press,
1993.

[DFM94] Scott Danforth, Ira R. Forman, and Hari
Madduri. Composition of Before/After Meta-
classes in SOM. In Proceedings of OOP-

SLA'94, Portland, Oregon, October 1994.

[DM95] Francois-Nicola Demers and Jacques Malen-
fant. Reection in logic, functional and object-
oriented programming : a Short Comparative
Study. In Workshop of IJCAI'95 : On Re-

ection and Meta-Level Architecture and their

Application in AI, pages 29{38, August 1995.

[Don90] Christophe Dony. Exception Handling
and Object-Oriented Programming: towards
a synthesis. In Proceedings of OOP-

SLA/ECOOP'90, pages 322{330, 1990.

[FJ89] Brian Foote and Ralph E. Johnson. Reec-
tive Facilities in Smalltalk-80. In Proceedings

of OOPSLA'89, ACM Sigplan Notices, vol-
ume 24, pages 327{335, October 1989.

[GR83] A. Goldberg and D. Robson. Smalltalk-80,

The language and its implementation. Addi-
son Wesley, Readings, Massachusetts, 1983.

[Gra89] Nicolas Graube. Metaclass Compatibility.
In Proceedings of OOPSLA'89, ACM Sigplan

Notices, volume 24, pages 305{315, October
1989.

[HJ95] Bob Hunkle and Ralph E. Johnson. Deep in
the Heart of Smalltalk. In The Smalltalk Re-

port , july 1995.

[Ing78] D.H.H. Ingalls. The Smalltalk-76 Program-
ming System Design and Implementation. In
5th POPL, pages 9{17. Tuscon, Arizona, 1978.

[KdRB91] Gregor Kiczales, Jim des Rivi�eres, and
Daniel G. Bobrow. The Art of the Metaob-

ject Protocol. Cambridge, MIT Press, 1991.

[KG76] A. Kay and A. Goldberg. Smalltalk-72 In-
struction Manual / SSL-76-6. Technical re-
port, Xerox Parc, Palo Alto, California, 1976.

[LKRR92] J. Lamping, G. Kiczales, L. Rodriguez, and
E. Ruf. An Architecture for an Open Com-
piler. In A. Yonezawa and B. C. Smith, ed-
itors, Proc. of the Int'l Workshop on Reec-

tion and Meta-Level Architecture, pages 95{
106, 1992.

[LP90] Wilf R. Lalonde and John R Pugh. Inside

Smaltalk (volume 1). Prentice-Hall Interna-
tional Editions, Englewood Cli�s, New Jersey,
1990.

[Mey90] Bertrand Meyer. Conception et Programma-

tion par Objets - version fran�c aise. iia - In-
terEditions tirage 1991, France, 1990.

[Moo86] David A. Moon. Object-Oriented Pro-
gramming with Flavors. In Proceedings of

OOPSLA'86, pages 1{8, Portland, Oregon,
September 1986. ACM Sigplan Notices.

[Par94a] ParcPlace. spaceDescriptionmethod of the
ObjectMemory class metaclass. Description
of the StackSpace in VisualWorks2.0. Tech-
nical report, ParcPlace System, Inc, August
1994.

[Par94b] ParcPlace Systems, Inc, Sunnyvale. Visual-

Works Release 2.0 of 4 August 1994, 1994.

[Pas86] G.A. Pascoe. Encapsulators: A New Soft-
ware Paradigm in Smalltalk-80. In Proceed-

ings of OOPSLA'86, ACM Sigplan Notices,
pages 341{346, November 1986.

[RC94] Fred Rivard and Pierre Cointe. From Envy-
Classtalk to Ada9x - Final Progress Report.
Technical report, OTI-EMN, December 1994.

[Riv95] Fred Rivard. Extension du compilateur
Smalltalk, Application �a la param�etrisa-
tion de l'envoi de message. In Actes des

Journ�ees Francophones des Langages Appli-

catifs, JFLA'95. INRIA - collection didac-
tique, January 1995.

[Riv96] Fred Rivard. Dynamic Instance-Class Link. In
Submission to OOPSLA'96, February 1996.

[RM93] F. Rousseau and J. Malenfant. Browsing in
Explicit Metaclass Languages : an Essay in
Reective Programming Environments. In
Informal Proceedings of the Third Workshop

on Reection and Metalevel Architectures in

Object-Oriented Programming, OOPSLA'93,
October 1993.

[Sie94] Siemens. Simatic Object 5 O�ine. Technical
report, Siemens, 1994.

A.1 Code

We give here some major methods for the addition of pre/post conditions into Smalltalk semantics. The full
development can be loaded using ftp at ftp.emn.fr under /pub/rivard/Smalltalk/visualworks2.0/prepost.st. (We
provide a version for visualworks1.0 in /pub/rivard/Smalltalk/visualworks1.0/prepost.st.)

Browser Metaclass MetaclassWithControl

swapControls swapControls swapControls
\Changing the class of the metaclass to get \I get some compilation \I don't want compilation and

some compilation controls or vice versa" and execution controls " execution controls any more"

j metaClass j self toMetaclassWithControl self toMetaclass

className isNil ifTrue:["1234].

self changeRequest ifFalse:["1234].
metaClass := self nonMetaClass class.

Cursor wait showWhile:[metaclass swapControl].

className := metaClass browsingName.
self changed: #className

Behavior Metaclass MetaclassWithControl

compilerClass compilerClass compilerClass
\Answer a compiler class to \Answer a compiler class to \Answer a compiler class to

source methods of this class" source methods of this class" source methods of this class"

" self class compilerClass " Compiler " CompilerWithControl

ClassDescription Metaclass MetaclassWithControl

browsingName browsingName browsingName

\Answer an appropriate \Answer an appropriate \Answer an appropriate

browsing name." browsing name." browsing name."

" self class browsingName " self soleInstance name " (super browsingName ,

self class classOnControlString

) asSymbol

Parser ParserWithControl

compilePrePostCondition compilePrePostCondition

\Just forget about the pre- and post-conditions" \ compile the pre and post condition if they are valid"

preCondition isNil

ifFalse:[self compilePreCondition].

postCondition isNil
ifFalse:[self compilePostCondition].

ParserWithControl

compilePreCondition
"Adding the preCondition to the beginning of the current statements.

The tree to produce is something like

[...the preCondition...] value

ifFalse:[CompilerWithControl preConditionSignal raiseRequest]"

j block statement j
preCondition := builder newMessageReceiver: preCondition receiver

selector: #value

arguments: #() .
"|||-error block construction|||||-"

block := builder newMessageReceiver:

(builder newMessageReceiver: (builder newVariableName: 'CompilerWithControl')
selector: #preConditionSignal

arguments: #())

selector: #raiseRequest
arguments:#().

"|||-preConditionBlock construction|||{"

statement := builder newMessageReceiver: preCondition
selector: #ifFalse:

arguments: (Array with: (builder newBlockArguments: #()

body: (builder newSequenceTemporaries: #()
statements: (Array with: block)))).

parseNode body statements addFirst: statement.

ActalkProgramNodeBuilder

newMessageReceiver: rcvr selector: sel arguments: args

"a.selector are asynchronous messages"
j ws j

sel isCompound

ifFalse: ["super newMessageReceiver: rcvr selector: sel arguments: args].
"optimizing for less than 5 arguments. 99.1 purcent of the symbols "

sel numArgs <= 5

ifTrue:[j tab j

(tab := OrderedCollection with: (self newLiteralValue: sel selectorPart)) addAll: args.

ws := (String new: 100) writeStream.
ws nextPutAll: 'addMessage:'.

sel numArgs timesRepeat:[ws nextPutAll: 'with:'].

"self newMessageReceiver: rcvr

selector: ws contents asSymbol

arguments: tab asArray].

ws := (String new: 100) writeStream.
args size timesRepeat:[ws nextPutAll: 'with:'].

"self newMessageReceiver: rcvr

selector: #addMessage:arguments:
arguments: (Array with: (self newLiteralValue: sel selectorPart)

with: (self newMessageReceiver: (self

newVariableName:'Array')
selector: ws contents asSymbol

arguments: args))

